r - Making fitdist plots with ggplot2 -
i fitted normal distribution fitdist
function fitdistrplus
package. using denscomp
, qqcomp
, cdfcomp
, ppcomp
can plot histogram against fitted density functions
, theoretical quantiles against empirical ones
, the empirical cumulative distribution against fitted distribution functions
, , theoretical probabilities against empirical ones
respectively given below.
set.seed(12345) df <- rnorm(n=10, mean = 0, sd =1) library(fitdistrplus) fm1 <-fitdist(data = df, distr = "norm") summary(fm1) denscomp(ft = fm1, legendtext = "normal")
qqcomp(ft = fm1, legendtext = "normal")
cdfcomp(ft = fm1, legendtext = "normal")
ppcomp(ft = fm1, legendtext = "normal")
i'm keenly interested make these fitdist
plots ggplot2
. mwe below:
qplot(df, geom = 'blank') + geom_line(aes(y = ..density.., colour = 'empirical'), stat = 'density') + geom_histogram(aes(y = ..density..), fill = 'gray90', colour = 'gray40') + geom_line(stat = 'function', fun = dnorm, args = as.list(fm1$estimate), aes(colour = 'normal')) + scale_colour_manual(name = 'density', values = c('red', 'blue'))
ggplot(data=df, aes(sample = df)) + stat_qq(dist = "norm", dparam = fm1$estimate)
i'd highly appreciate if give me hints make these fitdist
plots ggplot2
. thanks
you use that:
library(ggplot2) ggplot(dataset, aes(x=variable)) + geom_histogram(aes(y=..density..),binwidth=.5, colour="black", fill="white") + stat_function(fun=dnorm, args=list(mean=mean(z), sd=sd(z)), aes(colour = "gaussian", linetype = "gaussian")) + stat_function(fun=dfun, aes(colour = "laplace", linetype = "laplace")) + scale_colour_manual('',values=c("gaussian"="red", "laplace"="blue"))+ scale_linetype_manual('',values=c("gaussian"=1,"laplace"=1))
you need define dfun
before running graphic. in example, it's laplace distribution can pick want , add more stat_function
if want.
Comments
Post a Comment